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Abstract 

The method of action-angle variables is used to obtain the complete periodic solutions 
of a nonlinear chiral Lagrangian system with the Lagrangian of the form La = ½ {/12 + 
[X(q -/1)2/(1 - ?~q2)] _ [ko@/( 1 _ Xq2)] } q = (ql, q2, q3) by making suitable canonical 
transformations. Usual semiclassical quantization procedure may then be applied to obtain 
the energy levels, which is shown to be in good agreement with exact results. 

1. Introduction 

The method of  action-angle variables is not  only an esoteric technique of  
classical mechanics but a powerful tool  in the understanding o f  periodic solu- 
tions of  classical dynamical  systems, and further it is a "royal  road to quantiza- 
t ion" as Sommerfeld puts it. Increased interest has been evinced recently in 
this method,  as one observes from its usage in the studies of  the mot ion of  the 
Morse oscillator in chemical physics (Porter et al., 1975) and anharmonic 
oscillator (Mathews and Eswaran, 1972) in quantum mechanics, coupled 
oscillator systems perturbed by  nonlinear nearest-neighbor interactions (Ford ,  
1974) in statistical mechanics, solution of  nonlinear evolution equations by 
inverse method (wherein the method is interpreted as a canonical transforma- 
tion to action-angle variables, see for example McLaughlin, 1975) and quantiza- 
tion of  the Sine-Gordon equation by the action-angle variable method 
(Faddeev, 1975). It is the aim of  the present paper to show that  the classical 
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dynamics and in particular the bounded motions of a nonlinear chiral Lagrang- 
Jan of the form 

1 [ X(q'~l) z koq 2 ] 
. ~ = ~ [ / 1 2 + _ _ _  (1 _ Xq2) (1 -~ ~-q2)] (q=ql, q2,q3) (1.1) 

may be analyzed explicitly by the method of action-angle variables. The above 
system in the k o = 0 limit is a particular parametrization of the SU(2) x SU(2) 
Lagrangian [and is equivalent to the zero-space dimensional version of the 
Lagrangian of equation (3.39), Gasiorowicz and Geffen, 1969]. The exact 
quantization of this system was discussed recently by us (Lakshmanan and 
Eswaran, 1975). Here our main purpose is to show the complete analyzability 
of the classical bounded motions by the method of  action-angle variables. 

The plan of the paper is as follows. In Section 2 we give a brief discussion 
of the system Hamiltonian and in Section 3 we perform the canonical trans- 
formation to the action-angle variables. Section 4 contains the complete 
periodic solutions of the system, while in Section 5 we give a brief discussion 
of the semiclassical quantization of the system. 

2. The System Hamiltonian 

The canonically conjugate momentum corresponding to the Lagrangian is 

p - - ( 2 . 1 )  
Oil (1 - Xq 2) 

whence the Hamiltonian becomes 

1 [-2 + X(q'/l) 2 koq 2 ] 
(2.2) 

On expressing (2.2) in terms of spherical polar coordinates (q, 0, 4) the Hamil- 
tonian becomes 

where 

1 [/12 + koq2. L 2] 

/4=~= 2LT_-x-UT: *~ j  

L 2 = q4 [b2 + sin 2 0 ~2] = const  

Solving for q at a fixed energy E gives 

(2.3) 

(2.4) 

q = - ~ q [ - - 5 -  q4 + \-SX-/ + c (2.5) 
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where 

and 

a = 4 ~  + k 0 + X2L 2 

b = -/Co + X2L 2 

c = - L  2 

(2.6) 

3. Transformation to Act ion-Angle  Variables 

From the general theory of  canonical transformation in classical mechanics 
it is known (Goldstein, 1950) that when the Hamiltonian is not explicitly time- 
dependent, and the system is periodic, the suitable method to analyze the 
dynamical problem is to transform to a system of  conjugate variables (Qi,  Pi) 
in which the new momenta Pi are action variables and Qi are cyclic coordinates. 
The generator that induces such a transformation is Hamilton's characteristic 
function (Goldstein, 1950), 

where 

and 

W(q, 0, ¢;?I, P2,P3) = Wq + Wo + w~ 

f 0 Wq =fpqdq = (t _~q2) dq 

So) 

(3.1) 

(3.2a) 

w~ =.f ped¢ = Me (3.2c) 

Then the equations o f  motion in terms of  the new variables become 

~)i OH = - -  = vi (const) (3.3a) 0~ 
/6/= - 0H 

- -  --  0 ( 3 . 3 b )  
0Qi 

the new and old Hamittonians being identical. We note that 

Qi = uit + ~i (3.4a) 
and 

Pi = Ji (constants) (3.4b) 

The idea is then to choose the P/s such that they are constants of  motion and 
calculate Qi from the relation 

0W 0It/ 
Qi - - (3.5) 0Pi 0Ji 

1/2 

dO (3.2b) 
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Comparison of (3.5) with (3.4a) gives the necessary solution. We then proceed 
as shown below. 

The first of the three conserved momenta that are proportional to the action 
~riables in our case (2.2) is 

PI =-N = pqdq 

1 .1~([c+(b+a][ (b~_a) ] 
- 4rr \ ~ - ]  ~ + ~2 

~< 

1/2 d~ 

(1 - x~)~  
(3.6) 

when we have made the substitution q 2 = ~ in the integral (3.2a). Since 

and 

we have 

-(b + a ) -  [(b +a) 2 - S(b-a)cX z] 

~> = 2X(b - a )  

-(b +a) + [(b +a) z -8 (b  -a)cX 2] 
~< = 2X(b - a )  

(3.7a) 

(3.7b) 

--(--C) 1/2 b) 1/2 [-(cX 2 + b)] 1/2 
P1 - N =  - -  + (a - (3.8) 

2 2(2)1/2X 2X 

The other two are 

1/2 

(3.9) 

and 

P3=-M=po (3.t0) 

Then from (3.5) and using the quantities given in the Appendix we evaluate 
the new coordinates as follows: 

=sin-l[ a +b + 2x(b-a)~]R1/2 (3 .11)  
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QL= ~ N'M = -  [ \ g ] o , c ~  + ~,~ b,~ dL] I\a~ /b,~ 

\ab]a,c \ a t /  ~ +\aL]M 

=qL -- T \ \ ]  sin-I R 1/2 

L 
2(_C)1/2 {sin-l[(a 

+ b) + 2X(b - a)~] + sin_ 1 
R1/2 1 ~R u2 J} 

+ 
X2L 

2 [-(b  + CX2)] 1/2 
sin-1 [ (1 - X~)(a - 3b)+4(b + cX2) -- ~-)-R -57$ 

where 

XL + 
2 [--(/7 + C)k2)] 1/2 

sin -1 [ (1 - X 0 (a + b + 4cX 2) + 4X ~ (b + cX 2) ] 
[ 

R = (a  + b )  2 + 8X2(a  - b)c (3.12) 

~?cot0 ] M 
= '~ - c ° s - ~  [ ( i  - , T b " ~ J  ' ,7 =-/ (3.13) 

In equations (3.11)--(3.13) the old coordinates (~, 0, ¢) are held constant in all 
differentiations. Now using the equations of motion, we find from (2.6) and 
(3.8)-(3.10) that 

QN = = 2 = 2(ko + 2EX) 1/2 -= CON (3.14a) 
L,M 

and 

OL -- \gZ]N,~ ( - ~ ) " ~  - 2 - col (3.14b) 

( 0 E )  = 0 ~ COM 
0~- -  ~N,~ (3.14c) 
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Thus the solution of the equation of motion takes the rather simple form 

QN(t) = ~N + tONI (3.15a) 

Qr(t) = 6L + CoLt (3.1 5b) 

QM(t) = 8M (3.1 5c) 

4. The Complete Periodic Solution 

The radial orbit is easily obtained from (3.11) and (3.15a): 

q(t) =A 1-13sin 2 + 

where 
[R1/2 - (a + b) ] 1/2 

A = k TX~b ---a) ] 

2R 1/2 
t3- 

R 1/2 - (a  +b) 

(4.1) 

(4.2) 

(4.3) 

( t A t <~ X -1 / 2 when X > 0) 

and ~" = 6N/2 -- a/4. One may substitute (4.1)l(4.3) in (2.3) and verify that 
H = E. Similarly the orbit for 0 is obtained from equations (3.12) and (3.15b) 
to be 

cos O(t) = (1 - r/~) 1/2 cos [COLt +6L +LAL] (4.4) 
where 

A L - 
X [a+b+2X(b-a )x]  

[2(a - b)] 1/2 sin-I R1/2 

1 ( [ a + b + 2 X ( b - a ) ]  f + b ) x + 4 c X ] t  
2(-c) 1/2 sin- 1 + sin_ 1 (a 

2 [ - (b  + cX2)] 1/2 sin-1 (1 - X)(a - 3b) +4(b +eX 2) 

and 

X 
- 2 [ - ( b  + eX2)  1/2 

sin- 1 [(1 - X)(a+b+4cX2)+4(bt - R  1/2 + cX2)] (4.5) 

X = [2X(b - a ) ] - 1  {-(a  + b) + n 1/z sin ((.ONt + ~N)} (4.6) 
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Finally from equations (3.13) and (3.15c) we have 

r/cot O(t) ] 
q~(t) = 5 M + cos -1 (i _~2-~i72] (4.7) 

With the aid of equations (4.1)-(4.7) we may express the Cartesian coordinates 
and momenta in terms of the variables QN, QL, and QM and thus through equa- 
tions (3.14) as functions of t and of the constant angular momenta. Trans- 
formation to the polar coordinates 

x = ql = q sinO cos~b 

Y = qz = q sinO sine (4.8) 

z = q3 = q cosO 

gives the conjugate momenta 

Pq =Px sinO cosO +p), sinO sine +Pz cosO 

Po =Pxq cosO cos¢ +pyq cosO sinq~ +Pzq cosO (4.9) 

Pe~ = -Pxq sinO sin~ + pyq sinO cos¢ 

Making the inverse transformation we have in matrix notation 

 sin0os  co0os  si: l  
py = sin0 sin~6 cos0 sinq5 s Po/q (4,10) 

p [_cos 0 --sin 0 [pe/q sin 0 

Thus we have 

Ix( t )  I--sinqLsinQM+rlcosqLcoS;MM1 
, ( t )  I = q(t) / sin qz cos QM + ~7 cos qz cos 

z(t)_J ~ (1 - @)t/2 cOSqL 

and 

=Pv 
f - s i n  qL sin QM + r~ cos qL COS QM] 

-I 

[ 

sin qL cos QM + rt cos qL sin QM I 
+(1 - n2)l/2,cos qL j 

L 
+ - -  

q 

--cos qL sin QM --  'F/sin qg cos QM~ 
/ 

cosq L COS QM -- rl sinqL sin QM|  

-(1 - ~72) 1/2 sinqL .~ 

(4.1 1) 

(4.12) 
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where 
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qL = QL + LAL (4.13) 

5. Discussion 

We have shown that the bounded periodic solutions of a nonlinear chiral 
Lagrangian may be obtained by the method of action-angle variables. By the 
usual procedure of Bohr-Sommerfeld the canonical action variables may be 
quantized (with slight modification): 

N = (nr + ½)h (5.1a) 

L = (l + ½)~ (5.1b) 

and 

M = mfi (5.1 c) 

to obtain the energy level expression as 

~_ 3a,A/a~ lX(2nr +l  + ~)2fi2 (5.2) Enr, l = (2n r +1 -~J~o "' + 
which is in agreement with the exact quantized energy level expressions 
(Lakshmanan and Eswaran, 1975) apart from the constant factor. It might 
now be interesting to see whether the actual (3 + 1)-dimensional field 
Hamiltonian itself may be expressed-in terms of action-angle variables-by 
making suitable canonical transformation as is the case of the Sine-Gordon 
field case. 

Acknowledgments 

We are thankful to Professor P. M. Mathews and Professor K. M. Karunakaran for 
their encouragement. 

Appendix 

In this Appendix we give the necessary quantities to evaluate the Qfs: 

1(2)1,2 
aa 8X ~ sin-l[(a+b)+2X(b-a)~]/R1/2 

8Wq_ 1 
Ob 4 [ - (b  + cX2)] 1/2 

sin-l[ ( 1 -  x~)(a - 3b) + 4(b + cx=) -_ X~rfR -i7~ 

1 ( a - - ~ )  1/2 sin -1 [(a+b)+2X(b-a)~ 1 
4X R 1/2 

(A.t) 

(A.2) 



aWq_ 
~c 

where 

and 

where 
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1 [(a + b)~ + 4cX] 
4 ( - c )  l/z sin-1 R - 

X [ ( t - X ~ ) ( 4 c X 2 + a + b ) + 4 X ~ ( b + c X 2 ) ]  
4 [ - ( b  + cX2)] 1/2 sin-1 ~ ~ X ~ l - 7 g  

(A.3) 

R =(a  +b)  2 + 8 ( a -  b)c~, 2 

3L - q L  =cos -1 kl -----~]  (A.4) 

awe -1[ ] 
- -  = --cos cos0 (A.5) 
~M (1 - -  7~2) 1 / 2  

r~ = M/L  (A.6) 
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